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A theoretical study of the tunneling phenomenon through a metal-insulator-metal junction

containing paramagnetic impurities is made.
acting weakly with each other through a general indirect-exchange interaction.

The impurity spins are assumed to be inter-

Expressions

for conductance are obtained by perturbation theory up to third order treating the impurity-
electron—conduction-electron interaction as a perturbation. The voltage and temperature
dependence of the resulting expression of conductance is analyzed and compared with the
recent experimental results on the type of junction considered here. Agreement between
the experimental and theoretical results is satisfactory.

I. INTRODUCTION

The use of tunneling phenomena is one of the
most powerful methods of investigating electronic
states in metals, semimetals, and semiconductors.
Electron tunneling is also useful in investigating
the interaction between electrons and internal ex-
citations of magnetic impurities in the insulating
barriers. A complete account of tunneling in solids
has been given by Duke.! While investigating tun-
neling through metal-insulator-metal junctions,
Wyatt? found that these junctions exhibit anomalous
behavior in the conductance as a function of the ap-
plied bias. In particular, he found that the con-
ductance had a logarithmic voltage dependence and
that the zero-bias conductance increased logarith-
mically with the decrease in temperature.

There have been various theoretical attempts to
explain the zero-bias anomalies, notable are those
of Kim, ® Anderson, * Appelbaum, 5 Solyom and
Zawadowski.® Perhaps the most successful theory
is that of Anderson and Appelbaum who have con-
sidered the interaction of a single magnetic im-
purity with the conduction electrons. Like Kondo,’
they used the second Born approximation in con-

sidering the s-d exchange interaction. Recently,
Beal Monod® investigated the effect of a pair of in-
teracting magnetic impurities on the conductivity
of a simple metal. He showed that coefficient of
In|2T/2¢; | remains negative, as it was for a
single impurity, but its absolute value decreases.

In what follows, the tunneling phenomenon is in-
vestigated, taking into account the weak interac-
tion between a pair of magnetic impurities. We
shall perform the calculation of the scattering
amplitude by perturbation theory up to third order.
The interaction between the impurity electrons
and conduction electrons is described by the s-d
exchange interaction, and for simplicity, each
impurity is supposed to have total spin 5. We as-
sume the two spins §1 and §3 to be coupled by a
general interaction W. The interaction W may be
due to the Ruderman-Kittel-Kasuya- Yosida
(RKKY)?® interaction between the impurities via
the conduction electrons, direct interaction, or
indirect exchange interaction.

The tunneling Hamiltonian method, first used
by Cohen, Phillips, and Falicov, !° is followed in
the present work. In Sec. II, we shall formulate
the Hamiltonian of the problem. In Secs. III and
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1V, the expressions for conductance in second-
and third-order perturbation theory, respectively,
are obtained. In Sec. V, the results so obtained
are discussed in the light of experimental results.

II. FORMULATION OF HAMILTONIAN

We shall consider a metal-A-metal-oxide-metal-
B junction. The insulating barrier (metal oxide)
includes paramagnetic impurities. A small bias
voltage V is applied between the two metals. This
situation is shown in Fig. 1. Metal A is usually
a transition metal, and metal B is a nontransition
metal. The metals are in their normal state. The
impurities are supposed to be confined to the left-
hand side only.

The Hamiltonian of the system can be written as

H-TPE TV &) +35 UG -F,) . (1
; 2m i#4
In second-quantized form it becomes
H=H +H" , (2a)
H = [* &) [p?/2m+VE) ] &) dx , (2b)
H'=% [¢*@)v*F)vE-%) 9 &) pX) dx ax’,
(2¢)
where
V&) =2, a, 92 (X) +25; b, P (X) (3a)
V&) =2 a9t R) + 2 o 9P () (30)

The {¢? (X)} and {9? (X)} are a complete set of one-
electron states in the regions a and b of Fig. 1,
respectively. The states of interest, {y¢(X)} and
{42 (%)} are the Bloch states {¢%, (X)} and { ¢2, (X)}
on sides a and b, respectively, along with the
states {1, (%)} and { %, (X~ R)} of the localized
electrons. The impurities are supposed to be
located at origin and at R. We obtain for (),

P R) =2 yy $ B) + 22 by Pl (X) + 245 4 (K)
ko 4

k,0
+od2 2 (X-R) (4)

where a,, and b,, are destruction operators for an
electron with wave vector K and spin ¢ on sides a
and b, respectively, and d, is the destruction op-
erator for an electron in a localized state. Sub-
stituting 3 (X) and ¢* (X) in (2), where we have
taken U(X-X’) as the appropriate electron-elec-
tron interaction, one obtains a Hamiltonian of the
following forms:

H=H;+Hy+Hg++++ , (5)
H1=Z G:oa:uaka+z 630 bl):u bo - (6)
ky0 ky0
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FIG. 1. Schematic representation of a tunnel junction.

This is just the single-particle conduction-electron
Hamiltonian,
Hy= 20 Tyl o+ Ton Do Og) (72)

kyk'y0

+k2 (148 EErRY 70 (5% 7 L d*a, ) (7b)
14

+ 20 (14t TERY T2 (0% 4+ d¥by,) . (7c)
kyo

The first term is due to direct overlap of the
conduction-electron wave functions on sides ¢ and
b as they tail into the barrier. The second and
third terms are due to the overlap of the localized
d states wave functions with those of the conduction
electrons of the a and b sides, respectively:

H3=Z;q Eqn, - W§1.'§2 . (8)

E, is the appropriate single-particle energies for
the localized electrons, which are taken to be zero.
Terms involving the product of four operators
for conduction electrons only are contained in Hj.

These terms have been already considered by
Kim.?

Terms involving the product of four operators
for conduction electrons on side a and localized
electrons are contained in H;. The terms of most
interest to us are the exchange-scattering terms:

*
z( T W, d* aldb ay,

kr'ca’

E-&).R *
+ T‘/:’,e“ R W e a0 akv.dﬁ,ak.,) .
kRk'oo

This can be also written as

2 Wd,,.dk,(1+e“;"i"'n) (d+ @2 Y ak,. (di+ d2 ) ay &

kR'co’
b D Waae (1= et EER) (g1 _ g2 )% ¥ (3L, - d2) ay, .

kk'oo’
(9
In all the remaining terms we factorize the two-
body operators, and retain only terms of the form

Z;V,fd(1+e“i';')'i) (X Gpo+ ary dy) (10

In Hg, there are terms involving the product of
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four operators for conduction electrons on side b
and the localized state, Since the coupling between
electrons on side b and the localized electron is
very small, we retain only a term which is first
order in this coupling, the product of three elec-

He=2 Vig(dy b+ brod,) - (11)
kyo

In H,, there are terms in which conduction-
electron cperators for sides a and b along with

tron operators for side b and one localized-elec- the localized-electron operator appear. Among
tron operator. Again, one obtains these, we retain only
‘ J
20 Wi wa(L+e EER) g% (L 4 d2)* byoo (@2+d2) +H. c. (12a)
kk'y00'
+ Z Wia,wa (1= & EEVR) g% (L, — G2)* b,... (@1 - d?) + H. c. (12b)

kR'y G

+ 2 Wagwa (e EORY g% % b+ Hoe,  (19)

kR, 00’

As we are concerned with paramagnetic impurities, we replace the d operators by spin operators in (9)

and (12), obtaining

Ja( Z(l +ei (;- ;').R) [(§1. + §2)Z (a:' ak" - a:t ak'l) + (§1 +§2)’ (a:‘ ah’r) + (-S.], + §2)~(Q:' ak" )]
kR

-

+2.(1= gt E

kR’

) [(31 sz) (ak. Apoy — ak. ak';) + (Sl Sgr (a:s ak.,) + (Sl - Sg)-(a;:' ak:.)] )

- .= - - * o,
+T"a<§(1 +ei(k-k').R){(Sl+Sz),[(a:' bkl,+b:l, akg)" (a:‘ ak:,+bk:. ak.)]+(Sl+Sa) (a:. bk:,+b:i, a,”)

+(8,+8) (@ by + B )} + 2 (1= S EEVRV(S, = §,), [(a), by + B, @)

kR’

- (a;:t bk'a + b:ﬂ akt)]"' (-s.l - .S.Z)* (a:A bk't + b:’n Qpy ) + (é’l - §2)-(a:, bk'l + b:o, Ap, )} ) . (14)

The § (S, +8,) part will leave the total spin of
the pair unchanged, whereas the part 3 (81 )
will allow transition from |11 =0to IT1=1 and
vice versa. As there is no external field present,
the conductions due to spin-up and spin-down elec-
‘trons are equal. For the same reason, the ther-
mal average of the z component M of T and (S; + §,)
is zero, but one will need the Boltzmann probabil-
ities for the pair to be in a singlet (171=0) or a
triplet (17 |=1) state given, respectively, by

1
Pyriz0=Po= 17377 °

oV/eaT (15)
Py =Py = TeWT

In addition to Eq. (14), we have also the following
terms:
T 20 Gy Dyeg + iy Ong)

kk'yo

+T,,(1+e“i'i')'§) 22 (af, bug+ by ) - (16)
kR0

The first term of (16) is just (7a). The second
term represents all the nonexchange mechanisms for
the tunneling in which conduction electrons interact

with impurities. Typical nonexchange mechanisms
of this sort are given in (13).  Such terms also re-
sult from the interference between (7b), (10),
(7c), and (11).

As noted by Anderson, ° the localized states act
as a bridge between the exponentially tailing wave
functions of the conduction electrons of the opposite
sides of the junction, thus effectively decreasing
the size of the barrier for those electrons which
tunnel across the junction by means of the localized
states. As the coupling constant varies exponen-
tially with junction thickness, a decrease in the ef-
fective thickness of the junction by a few angstrom
can make the tunneling, assisted by impurities,
sufficiently greater than tunneling due to direct
overlap of the conduction-electrons’ states on
sides @ and b even for low concentration, and as
such we have neglected the contribution due to
later phenomena. So, finally, we can write down
the total Hamiltonian as

H=Hy+Hp+Hy , 1"

where

110_Z> Ekuakoako+2 ekubhubko— W(Sl Sz) ’ (18)

kyo
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€= €h,+eV . (19)
— W (8,-S,) is the barrier energy and its eigen-
values are
Wy =% [?3:
with
-i = §1 + §z N

I(I1+1)], (20)

[T|=0o0r1. (21

Hp represents the transfer of electrons from left
to right, while Hy gives reflection of conduction
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electrons from the impurities. We further divide

Hy and Hp into two parts:

Hp=Hp +Hps ,
2
Hp =Hpgy + Hgs . (22

Hrpy and Hpg, includes only elastic processes, i.e.,
1! is unchanged, while Hypp and Hp, includes in-
elastic processes in which 1T changes by + 1.

In view of Eqs. (14) and (16) and subsequent
discussion, the expressions for Hyy, Hgy, Hps,
and Hp, can be written down as

HTI = Tlaz;(l +ei(;_ E‘).R) {(§l +_S;)z[(a:' bk" - a:x bk’l) + (b:" Apy — b:'l akl)] + (§l+ .S.a)* (a:l bk'« + b:'a a,,,)
kkl

+(81+8,) (ap by s+ b @)} + T, 20 (1 +ei®ErR) (s Darg+ biry Tag) (23)
kR, O

Hpp=T; 20(1- & FFRY[(§ = 5,), [ (ah, by — g, byns) + (B e = b a) ]
124

+ (gl - -S.g)‘. ([l:‘ bk'l + bk*l‘ a,,.) + (§1 - gz) -(a:v bk': + b:’: Qp, )} ’ (24)

Hp, =Jaz(1 +ei (k- il).R)[(gl'*' §2 ):(a;:t Apty "'a;:x Ay ;) + (§1 + -S;)" (a:; ak") + (§1+ é;)-(a:' ak';)]’ (25)
kR

HRZ:Jaz;(1 - ei(i- ?).R) [(§1— §2)z (a:t Aper = a:, alz'l) +(§1— §2)* (a:, ak") +(§1 - §2)-(a:v ak’l)] . (26)
kR

III. CALCULATION OF TUNNELING CURRENT
(SECOND ORDER)

For calculating current across the barrier, we
neglect multiple scattering by localized spins pairs
since the impurity concentration is assumed to be
low. The tunneling current j,, can be written as

Jap=e E Pi’ M Z {Wkalu~k'o'1'u'f(€ka) [1- f(Gk'a')]}

kR!, o

-e2 Piny 2z {Wk’o'I'M’-koIMf(ek'o’) [1- f(eku)]}

ru kR, o

(27)

1 u is the statistical probability that the impurity
pair is having total spin equal to 1and its z compo-
nent M. f(e,,) is the Fermi-Dirac distribution
function. Since no magnetic field has been applied,
f(€,) will be the same for both spins and therefore
we shall omit ¢ in f(€l;). Wygry-prorrye is the transi-
tion probability per unit time for a conduction elec-
tron to go from the state 1K, &) on the side a to the
state |k, ') on side b with the localized spins

)
Weroo- k100

’

undergoing M-~M ;.f-'f', such that

c+M=5"+M" . (28)

Wyt rur-rory Nas similar meaning from: side b to a.
We treat H' as a perturbation and following

Kondo evaluate W, ; up to third order in H;;. It

is given by

2 7 7 7 .
Wy 20 (DHA o o g e
;i k#t Ei E,l

x6(E;-E;), (29

where ¢, j, and % are initial, final, and intermedi-
ate states, respectively. E;’s are corresponding
energies. The second term in the large parenthe-
ses represents the first Born approximation for the
transition probability. ’

Various distinct physical processes for the
trans1t10n of conduction electron with momentum
k on side a to states with momentum k' on side b
with their transition probabilities in the Born ap-
proximation are

or —@u/i) [ (14 &t FOR) |2 7,2 5(2% - €2), (30)

(2)
Wet10-#10
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Wii1-peit
T =@u/m) [ |1+ R 212+ 3 Ty, ] 6 (- k),
Weri-1-p11-1 (31)
Whilo-rn1t
or —@u/m) [ |1+t EERY |25 (72 BIEICGEN: A
Wit -1-#10 (32)
W pnio=(21/1) [ | (1 = & E-E»RY |22 T3 )16 (G + W= €b) (33)
W0 an00 = (27/7) [ | (1= &t F- B-R) 2313 )] 6(@-w-eb), (34)
Wty = @u/B) [ | (1= & FERY[24(72 )] 5 (24 W= &) (35)
WA -1 wmoo= (27/1) [ | (1= E 1R [24(72 )] 6(e- W= &) . (36)
. .
Using (27) one obtains the expression for the cur- @ 8 @ 41rea “ 5 1G-2»R) |2
=— ! 1
rent. We can split the current j,, into two terms g1’ =5y 7 P (ex) p®(ep) | (1+e )%
. @) (2)  (2) :
ji“’ and j3*’. j;*’ represents current from elastic 2 3 2
processes, while j§¥ also includes current from X(T 43P Ty,) (40)
inelastic processes. (The subscript ab on j{% has @ 0 . 4me® R -T2
been dropped.) We find &2 Bij = P “(ep) 0% (ep) [ (1-e )%,

]-{m 2”€Z|(1+ (k- k). R)lZ(T2+2P1 Tz )
x[f(eg) - f(ed)]6(et+eV-€b), (37
i 22T [(1- e EErR) | 28(73)]
-

% ({ Py (e [1-£(e5)]
=Py () [1-F()]} o (ef+eV+W— &)
+{P () [ 1-f(el)])

— Po(F(e2))[1-F(e2)]} 6(et+eV - W~ eg.))
(38)

We note that for ¢V < W and T'=0 the last term of
(38) will be zero. This is to be expected on gen-
eral physical grounds. An electron of energy € on
side a would have to tunnel into an energy state
€— Won side b, For eV<W and T=0, this process
is forbidden by the exclusion principle. The above
arguments are not restricted to second-order pro-
cesses and are true to all orders in H'.

We are more interested in g, the conductance,
which is given by

9\ .
e=(3%)7 - (30
If the sums over k and k' are replaced by inte-
grals over energy, the derivative with respect to

voltage is taken, and - (8f/8¢) (e - W) is replaced
by &(e - W) then one obtains

x3(1% ){(By+P,) +1 (Py-py) | tanh (LW
a 2k, T

+tanh( ‘;’;B‘ZTV) ]} (41)

Now here |(1 +e’“" I""R) |2 represents the average
value of it for all k and k',

In the above analysis, we have made the assump-
tion that the density of state p(e) is constant and
it has been removed from the integral sign and
replaced by its value at €= ¢, i.e., by p(eg).

For the case W=0 and R ~«, i,e., the two im-
purities are noninteracting and very far apart, the
average value of |(1+¢' " ¥"%)|12_2  and thus we
get

P (4ne?/m) 20%(ep) 0% (ep) (T 2+3 T, 2) . (42)

Dividing it by two, since we are having two im-
purities, we shall get the same expression for
conductance as obtained by Appelbaum, with
S=1 for a single impurity.

IV. CALCULATION OF TUNNELING CURRENT
(THIRD ORDER)

We proceed now to calculate the third-order
term,

4 H.H;
W)= ﬁ"g—fﬁ—kﬁ-um, E,), (43)

where we have assumed that J,, T,, and T, are
real and combined the first and second terms of
(29). For calculating W;3’, we shall be following
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Kondo.” The transition from the state i to j by
means of an intermediate state k may occur in two
different ways. The electron in state i scatters in-
to state 2 and then the electron in state 2 scatters
into state j, or an electron in the intermediate
state % first scatters into the final state j and then
the electron in state 7 scatters into the hole left by
the % electron. The terms which do not contain

f (ez) will be dropped as they are very small.
Further we shall replace 3 -« by

J

(3) _ p(8) _ 3
W00+ qi11- 2110 = Wrt00+q110-£11 = Wrt00-qi11-r011

H. M. GUPTA AND U. N. UPADHYAYA 4

P f_ig «eple)de. (49)

That is, we restrict the principal-valued sum over
intermediate states to an energy region of width
2E, centered at the Fermi Energy €7 (all energies
are measured from ;).

Thus one obtains the following expressions for
the transition probabilities considering only the
terms . which are proportional to 7 ,ana:

o -f __f _)~a_b,
== 4T, Japo§<m(2b+bl) ?:;(Zb b)) 6(ed+w=el), (45)

3) - 3) — w(3)
szrm-uu-k'voo— W§v1-1~qu-1-woo— Wkil-l‘qtlo-k'»oo

—_Llm 2
=—3T,, JaPl‘?(ek—eq—W

3) _ w(3) _ (3)
Wit - 1eqi00-211-1= Wh0-q100- #7111 = Whti-1-q100-2%10

=/, (26+b,) Lo (2p- bl)) 6(e2—-w-ed), (46)
€~ €

=_§TJa2JaPIE[( Lo

q

3) _ (8) _ 3
Wi 1-qr10-w0r1-1= Wito-qu11-5111 = We- 1 qr1-1-8010

fa ) (Zd— 611)] 5(2:— G,b,l) ) (47)

€= €+W  €—€,~-W

1 T,azJaP,%;[ (_%E)(zaml)] N (48)

where

a=(1+e R (14e R 224 (1B Buomi®R) | (49)

b=(1-eB)(1 - eFR) Lo (oiFR, ,miER) , (50

K-k-&', |k|=|kK|=]q
-E-K, (K[, o
|K| = 2% sini0.

O is the scattering angle between k and &’ and the
scattering can be considered as quasielastic. [The
error is of order (W+eV)/er, and can be neglected
since we are working with a weak interaction and
small voltages.] Also, we have

a=ae TR cc. blzﬁe"a'§+c.c. , (52)
a=2(ciB Ry HiER) , B=2(eiB R _ piERY) (53)

The average values of the above quantities for all
possible orientations of R are given by

a=(1/4n) [ aQza=2+[8/(2kR)*]{2(2kR) sin(2kR)
—-[(22R)%- 2]cos(2ER) ~ 2} , - (54)

b=(1/4n) f aob=2-[8/(2kR)*]{ 2(2kR) sin(2kR)

I
-[(22R)2-2]cos(2kR) -2} , (55)
@ =4(@-2), (56)

Z1=0 . (57)

The above terms represent the interference be-
tween reflected and transmitted exchange-scattered
current., Because we are mainly interested in
anomalous temperature- and voltage-dependent
terms, we determine if there are any terms propor-
tional to T2J, or T, T 7,7 Which exhibit anomalous
temperature and voltage dependence. Terms pro-
portional to T2J, clearly cannot be of importance
as only one exchange scattering is involved. The
terms proportional to T, T,J, will give the follow-
ing contributions:

(@) W3- w00 through the intermediate step
q+11 and 4410 have the total contribution

3 "fa fd -
-3 T Ty, JuPo2i [(q_ W e Tes W)(za al)]

Q

x5(@-e) .  (59)

(b) W3o. w0 through the intermediate step
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q400 and W3\ _,..ni-1 through the intermediate
step q+00, etc., will have the total contribution

%TaTJaJaPI-?[< -Ja +€k_ﬁ€'q_w)(2a-a1)]

Gk—€q+W

x5 (e2—€d) . (59)

In the Appelbaum® calculation, the terms propor-

J
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tional to T' 7, TaJ, are shown to be identically zero
when no magnetlc field is applied. With

0 f(e) p%(e) de
€e-W ’

@) =DLSp (60

-Eo

the current in third order can be given as (b, is
taken to be zero)

= ( 2"e>(Z T;2,P (2a+a) [22°(&,)] [f(e,) - f(ek')lé(%-in')) ; (61)

i$ = (- %i@) [(% TJ'azJa b) (% {[Pg?(en+ W) +Pog (€)1 (€8) - £(€2) f(e2)]1-[Pg%(€,) + PLg® (ep+ W)]

x [f(ed) = Fleg) F(e2) ]} o (e2+ w— €b) +E{[P1g (€= W) +P g (e,) ][ f(ef) - F(€f) £(l)]

- [Pyg?(e,) + Pog® (e — W) ][ (€2) - £ (€2) F(el)]} 6 (e2— W— ez))

+2%TJ’12J“P1{(20— ai) [ga(€k+ W) +ga (Eh_ W)]} [f(ek) 'f(ehl)]é(.ég" EZ')

+Z%T,4Ja T,(Po-P) {(2a-a;) [g%(ee+ W) = g2 (e~ W)} [ F(ep) = Flep)]6 (2= e,’:.)] . (82)
kR!

Replacing Ty« -+ by [ dede'p*(€)p®(€’)- « - and performing the integral over €’

with respect to V. With

, we take the derivative

F(w) =—fug(e) z—]; (e-W)de , (63)
we obtain for g‘®
g = (- 4me?/n) 2 T,, 27, P 0 (ep) 0 (€p) (2a+ay) 2F(eV) , (64)

2 -— -
g8 = <—"'“—4;e> %TJazJabp“(ep)p"(ep){F(eV) [(P0+P1)+(———-—P°2P1) (tanheV+W+tanhW eV)]

+F(eV+W) [P1+<E—Q§£) (tanheZV+W 1)] +F(eV- W)[P0+(&:—&
kp T

2% T 2%y T

W-eV
)(tanh % T -

)]}

+%T,42JaP1p“(eF) 0’ (ex) [(2a-a)) FleV-W) +(2a~a,) FleV+W)]

+3T, Tods (B=P) 0" (ep) 0°(e5) [(2a-ay) FleV-W)-(2a-ay) Flev+w)]). (65)

V. DISCUSSION
First we consider the various limiting cases of

the expressions derived for conductance above. It
can be easily seen that the expressions (40), (41),
(64), and (65) reduce to those obtained by Appel-
baum, ° for (a) W/ks T~0, R~; (b) W/ky T ~ o,
R—0; (¢) W/kyg T—~~ =, R—~0 and in the absence
of any external magnetic field.

The interesting point is now to examine the volt-
age and temperature variation of conductivity in the

general case. For doing numerical calculations,
we assume the concentration of the impurities to
be low, so that the interaction between impurities
is of the order of 10™ eV and @, b, a,, b; can be
replaced approximately by their values when R — «,
T, is taken to be twice that of 7,, and E,; equals
to 10 meV for the present calculations.

In Figs. 2 and 3, we have plotted the variation
of conductivity in second order with respect to
biasing voltage and temperature, respectively.
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FIG. 2. Variation of conductivity with applied biasing
voltage (second order). Temperature is 1.16 °K. Curves
I, II, III, IV, and V correspond to values of W=0, 10'4,
2x10™, =107, and —2x10™eV, respectively.

We observed a dip at zero bias. The amount of
dip increases with increase in interaction and it is
more for antiferromagnetic coupling in comparison
to ferromagnetic coupling between the impurity
spins. This is in contrast to Appelbaum’s result
where the g‘® is found to be constant with respect
to biasing voltage and temperature in the absence
of any magnetic field.

In Figs. 4 and 5, we have plotted the conductivity
in third order with respect to biasing voltage and
temperature, respectively. In the case of antifer-
romagnetic coupling between impurities, we ob-
serve maxima at slightly different biasing voltages
and temperatures from that found in the case of
noninteracting impurities.

The ideal behavior of the metal-insulator-metal
junction at low temperature for fairly low voltage
(up to 500 meV) has been discussed by many auth-
ors, 1'% without the resonance term, In Fig. 6,
we combine our results with interacting paramag-
netic impurities for total conductance, with ideal
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FIG. 3. Variation of conductivity with temperature
(second order). Biasing voltage is zero. Curves I, II,
III, IV, and V correspond to values of W=0, 10’4, 2% 10,
—10", and - 2x10~4 eV, respectively.
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behavior in case of T,-I-M for various strengths
of interaction between the impurities.

One finds that as the interaction between the im-
purity spins is switched on, the resistance shows
a maximum for zero bias instead of a dip as in the
case of noninteracting impurities. This result is
in agreement qualitatively with the experimental
results reported by Mezei, !* for the case of
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FIG. 5. Variation of conductivity with temperature
(third order). Biasing voltage is zero. Curves I, II, III,
1V, and V correspond to values of W=0, 107, 2x 10,
—10, and —2x 10 eV, respectively.
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Al-I-Al junction. It is found by Mezei that with
the gradual increase of Cr impurities in the
barrier region, one obtains a resistance maximum
at zero bias instead of conductance maximum as

in the case of very low concentration of impurities.
It seems that with the increase in concentration of
impurities, the impurity spins start getting ordered
either ferromagnetically or antiferromagnetically
as considered in the present paper. A rough nu-
merical estimate for the concentration at which
this magnetic ordering may take place, gives a
value of 1 at.% for impurity concentration, when
only the RKKY-type interaction is assumed to be
effective. Thus, when the concentration of impur-
ities is larger than this critical value, the inter-
action mechanism envisaged here will be effective
and the conductance will be proportional to the

TUNNELING THROUGH A BARRIER...

2773

concentration of impurity pairs. It is to be noted
that the earlier attempts to explain the resistance
maximum at zero bias in other systems® will not
be applicable here as they imply ferromagnetic
coupling between s and d electrons, whereas
Mezei finds both the dip in conductance and peak
in conductance for different concentration of Cr
impurities in the same tunnel junction. However,
the magnitude of the resistance maximum as ob-
served by Mezei cannot be explained very well by
our results.

It is expected that in the presence of an external
magnetic field, the conclusions deduced above about
the conductance will remain valid if the impurity
pair is antiferromagnetically ordered unless the
strength of the field is such as to break the pair
effectively. However, when the pair is ferromag-
netically ordered, the zero bias conductance, like
that in Appelbaums’s calculations, will show two
additional peaks.

In the present calculations, the dependence of
the conductance on the position of the magnetic im-
purities is not considered. This has been investi-
gated recently by Appelbaum and Brinkman, ** for
a single magnetic impurity in the interface. Further-
more, a perturbation theoretical approach is fol-
lowed and it is expected that this approach provides
a good account of the problem considered here.
However, it is desirable to treat the problem by
more advanced techniques, *~!" particularly in
the case of strong coupling between conduction
electrons and localized impurities. Such improve-
ments, as well as the detailed investigation of the
dependence of conductance on concentration by
considering the average of the contributions from
all possible pairs, is in progress.
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